CONTENTS

Foreword by Caroline Taggart	9
Introduction	13
\sim	
PHYSICS	
Energy and electricity	
Generating electricity	18
Heat transfer and efficiency	23
Using electricity	27
Forces	
The four fundamental forces	32
Planets, stars and galaxies	35
The origins of the universe	40
Laws of physics	42
Waves, radiation and space	
Waves	45
The electromagnetic spectrum	48
Radioactive substances	53

 \sim

CHEMISTRY

The periodic table	
How the table works	58
Atomic structure	63
Chemical bonds	67
Chemical reactions	73
Collision theory and rates of reaction	78
Fuels, air, pollution	
Chemicals in the air	83
Measuring pollutants	87
Useful chemicals from crude oil	88
Making life cycle assessments	90
Metals	
The Earth's structure	93
Metals and alloys	96
Construction materials	98
Organic chemistry	
Natural polymers and their roles in nature	102
Nutrition	107
Harmful chemicals	110

 \sim

BIOLOGY

Human (and other) bodies	
Circulation	114
Skeletal structure	119
Muscles and skin	122
Nervous system	126
Digestive system	130
Reproductive system	133
Respiratory system	137
Sensory systems	140
Cell biology	
Structure of a cell	146
Photosynthesis	150
Hormones	154
Evolution and environment ecology	
The origins of life	157
The evolution of the eukaryotic cell	160
Mutation and natural selection	163
Population	169
Predation	171
Extinction	175
Genetics	
Chromosomes	178

Inheritance	180
Reproduction and cloning	186
\sim	

	_			1
6			>	

Index	188
Further reading	192

ENERGY AND ELECTRICITY

GENERATING ELECTRICITY

Electricity has to be up there as mankind's favourite energy source. It's easy to work with and we can use it to power all kinds of machines and processes. However, naturally occurring electricity is rare and unpredictable – harnessing lightning strikes isn't really a practical option, for example. So we generate our electricity by converting other, more easily obtainable, energy sources.

NATURAL ENERGY SOURCES

Our world is replete with many different potential sources of energy, which we can convert into our preferred form – electricity. Some of them are sustainable – we can keep on using them indefinitely; others aren't – we'll use them up eventually and they won't get replaced.

Fossil fuels are coal, natural gas and oil. They are called

fossil fuels because they are the compressed remains of ancient forests (coal) or tiny sea animals (gas and oil), squashed up and broken down into carbon-based compounds which burn readily, releasing heat. They are not sustainable because the conditions that produced them no longer exist. Also, burning them releases extra carbon dioxide and other unwelcome gases into Earth's atmosphere, contributing to global warming. Despite that, about 75% of the electricity used in the UK comes from power stations that burn fossil fuels, though alternative sources are becoming more and more widely used.

Nuclear power is generated by breaking up atoms of plutonium and uranium. When nuclei of atoms from these two elements are battered with particles called neutrons, they release heat energy. Inside the nuclear reactor of a nuclear power station, this process (nuclear fission) is initiated and controlled, and the energy harnessed. The process doesn't release toxic gases, but the waste it generates is dangerous. Nuclear fuel is non-sustainable, and an accident at a nuclear power station could have very far-reaching and disastrous consequences.

Wind power is a sustainable source of energy. Large wind turbines, like giant futuristic windmills, are sited in exposed places with strong prevailing winds. The wind turns the turbine's blades, and this kinetic (moving) energy is captured. No pollutants are produced, but wind farms can be unsightly, noisy and dangerous to birds.

E=mc²

Bet you weren't expecting to see this quite so soon. This most famous formula, from Einstein's Theory of Special Relativity and first proposed in 1905, is not as scary as you might think, however. It just means that matter (any kind of physical substance – like rock, a star, a bar of chocolate or your cat) and energy are different versions of the same thing. This comes into play in nuclear fission: the products of the fission reaction together weigh slightly less than the original fission material because the 'missing mass' has been converted into energy.

E = energy m = mass (measured in grams and kilograms) c = the speed of light (which is a constant, i.e. it doesn't change no matter what)

The formula shows us how much energy is stored in a quantity of matter. The main points to understand from this are that a) matter is a kind of energy, and b) energy doesn't go anywhere. You can't add new energy to the universe and you can't take any away, but you can change it from one form to another. What this has to do with generating electricity is